By Adrian Gracia Romero PhD in Plant Phenotyping and Remote Sensing. AESA certified Drone Pilot.
One of the biggest challenges facing agriculture today is to meet the high food demand of a growing population, with the added challenge of improving crop productivity under the pressures of climate change. Among the main factors that will contribute most to crop yields are changes in precipitation and temperature patterns through periods of drought and heat waves, as well as loss of soil fertility.
The solution
To improve crop productivity under these conditions, it is vital to adopt better agricultural practices that offer resource optimization such as adjustments in irrigation systems. The digitization of this process is known as precision agriculture and encompasses activities that use information about the variability of a crop within a single plot to improve its management. These strategies work by grouping data from different sources in order to detect the presence of an irregularity in a field, study the reason for it and thus help the farmer in making decisions. Some examples of these situations are uneven application of resources such as fertilizers or irrigation system, differences in soil structure and composition, variability in crop density due to planting problems, or the appearance of weeds or diseases in the crop. This knowledge allows to better address problems in a localized manner, reducing costs and avoiding unnecessary use of excess resources. In this way, the application of precision farming strategies not only aims at agronomic benefits, but an improvement in the efficiency of resource management will reduce costs to the farmer and produce a lower environmental impact. In addition, in the long term, the farmer will have a large amount of data that will allow him to know his plot better and thus plan better.
Almost by definition, today’s precision agriculture strategies, aimed at enhancing crop productivity, use remote sensing tools and methodologies, ranging from information extracted from satellites and light aircraft to cameras loaded on drones. These technologies can be used in conjunction with other climatic or soil-related sensors to monitor the main environmental constants.
The development of these technologies plays a vital role in the current objectives of meeting food demands in a more sustainable manner. For this reason, governments and large companies are paying close attention and funding the development of innovative precision farming technologies to better manage and maintain competitiveness in the agricultural sector. One example is the Canadian government, which this year has invested $875,000 in projects aimed at improving disease and pest control in different crops. [Source].
Crop productivity in today’s scenario
At present, the application of artificial intelligence systems and machine learning to all this vast data aids in enhancing crop productivity by better understanding the heterogeneity of the plot with high precision. This understanding helps develop predictive models of production and quality. At HEMAV, we focus on the development of models rooted in historical data, combined with real-time satellite and meteorological information, to offer our customers unmatched accuracy in forecasting productivity throughout the crop cycle. Consequently, the Ag-Tech digital platform delivers timely updates on crop development, assisting farmers in decision-making and optimizing the harvest.
